
Fun tasks
maintaining Valgrind

Perftools Toronto 2018
Mark J. Wielaard

TL;DR (Summary)

There are lots of little issues that
come up maintaining Valgrind.
They are fun (really!) things that
teach you about the kernel,
compiler and linker.

How does valgrind work I
● Select (static linked) core/tool executable

– memcheck-amd64-linux
– Loaded at fixed high address

● Setup LD_PRELOAD
– vgpreload_memcheck-amd64-linux.so
– Contains overrides, helpers that run on ‘virtual

processor’

● Load actual executable ELF and ld.so in memory
● Setup stack, other environment, etc. as if ld.so

was started by kernel...

How valgrind works II
● Translates all instructions (basic blocks) into

IR (intermediary representation) that is
explicit about which bits are set/moved
where.

● Hands IR to selected tool for
‘transformation’ (might include ‘dirty
handlers’, which are ‘function calls’).

● Translates augmented IR back to native
instructions and executes them.

memcheck
● Most used tool
● Tracks which bits are defined

– Instruments IR to keep track of shadow
memory and registers

– Warns when a flow of control depends on
undefined data

– Intercepts malloc, free, etc.
– Keeps track of stack, etc.

Two “common” issues
● Syscalls used in new and interesting ways

– Either because of a kernel update, but probably
because of a glibc update

● Unknown instructions (or better modelling of
instructions)
– Update of gcc, new optimization

We see them first, since Fedora is first and
we care about all (RHEL) arches.

And valgrind is “lazy”, if we haven’t seen it, it
might not be implemented...

utimensat
change file last access and modification
times

● Tar “suddenly” started emit errors when run
under valgrind when unpacking some files
– Turned out it was using a gnulib wrapper for

utimensat, but after an upgrade used “direct”
glibc/linux utimensat.

– In the new case not all timespec fields are set
(or used by the kernel)

utimensat

int utimensat(int dirfd, const char *pathname,

 const struct timespec times[2], int flags);

 struct timespec {

 time_t tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 };

commit 790f5f3018f807153339e441e7aea1414f4b5c8d

GCC 8.1 is too smart
● Conditional jump or move depends on uninitialised

value(s)

if (! state→initial…) ...

where state is an struct that starts with

bool initial : 1; /* Use just one bit */

bool frob : 1; /* … */
● GCC generates:

cgijl %r1,0,0x487e560
(signed) Compare Grande Immediate and Jump on Low

● commit
51736549e33fc8468e47861031a70c7f8cadd691

Larger future task
● Add an elfutils/libdw based (external)

DWARF reader
– Current one is buggy and slow
– Adds a pull in debuginfo from remote option
– All the funky DWARF5, split-dwarf, etc.

goodness.

